ON A GRAPH ASSOCIATED TO INVARIANT CONJUGACY CLASSES OF FINITE GROUPS

BY

Antonio Beltrán

Departamento de Matemáticas, Universidad Jaume I, 12071 Castellón, Spain e-mail: abeltran@mat.uji.es

ABSTRACT

Let A and G be finite groups of coprime orders such that A acts by automorphisms on G. We define the A-invariant conjugacy class graph of G to be the graph having as vertices the noncentral A-invariant conjugacy classes of G, and two vertices are connected by an edge if their cardinalities are not coprime. We prove that when the graph is disconnected then G is solvable.

1. Introduction

Let A and G be finite groups and suppose that A acts by automorphisms on G. Then A acts on the set of conjugacy classes of G and we will consider those classes which are fixed by A. We define the invariant conjugacy class graph $\Gamma_A(G)$ as follows: the vertices of $\Gamma_A(G)$ are the noncentral A-invariant conjugacy classes of G, and two vertices are connected by an edge if their cardinalities are not coprime. When A = 1 or the action is trivial, then $\Gamma_A(G)$ is just the graph $\Gamma(G)$ defined in [3].

During the last years many properties related to $\Gamma(G)$ have been studied. It was proved in Theorem 1 of [3] that $\Gamma(G)$ has at most two connected components, and it is easy to see that this result and the same proof given there hold for the graph $\Gamma_A(G)$.

It was also proved in [3] that the diameter of $\Gamma(G)$, $d(\Gamma(G))$, is upper bounded by 4 when $\Gamma(G)$ is a connected graph. It was proved later in [4] and in [1] that in fact 3 is the best bound for $d(\Gamma(G))$. It is worth mentioning that far-reaching

Received April 15, 2001 and in revised form November 20, 2001

research appears in [6] which studies a generalization of the graph $\Gamma(G)$. The same proof of Theorem 4 of [3], but now considering the action of A on G and invariant conjugacy classes of G, works to show that the diameter of $\Gamma_A(G)$, $d(\Gamma_A(G))$, is less than or equal to 4.

Now consider the case where the graph $\Gamma(G)$ is not connected. It was first proved in [7], and later reproved in [3] and [1], that this condition is equivalent to the fact that G/Z(G) is a Frobenius group where the inverse images in G of the kernel and a complement are abelian. Consequently, each of the two components in $\Gamma(G)$ is a complete graph. Now, if we assume that A acts on G and $\Gamma_A(G)$ is disconnected, an upper bound for the diameter of each component of $\Gamma_A(G)$ can easily be obtained, by using the same methods as in [3].

Although the groups with $\Gamma(G)$ disconnected are completely determined, we do not know how to characterize the action on finite groups with $\Gamma_A(G)$ disconnected. However, if we assume that |A| and |G| are coprime, our main result obtains the solvability of G from a result of [2], which uses the classification of finite simple groups.

THEOREM A: Suppose that a group A acts coprimely on a group G and that $\Gamma_A(G)$ has exactly two connected components. Then G is solvable.

2. Proofs

The following lemma plays an important role in the proof of the theorems, and it is an observation that Lemmas 1 and 2 of [3] hold under the group action hypothesis. If B and C are vertices of $\Gamma_A(G)$, the distance will be denoted by d(B,C).

LEMMA 1: Suppose that a group A acts on a finite group G and choose $B = \operatorname{Cl}_G(b)$ and $C = \operatorname{Cl}_G(c)$ two A-invariant conjugacy classes of G. If (|B|, |C|) = 1, then the following properties hold:

- (a) $C_G(b)C_G(c) = G$.
- (b) BC is an A-invariant conjugacy class of G and BC = CB.
- (c) Suppose that $d(B,C) \geq 3$ (allowing $d(B,C) = \infty$) and |B| < |C|. Then BC is an A-invariant conjugacy class of G, |BC| = |C|, $CBB^{-1} = C$, $C\langle BB^{-1} \rangle = C$, $\langle BB^{-1} \rangle \subseteq \langle CC^{-1} \rangle$ and $|\langle BB^{-1} \rangle|$ divides |C|.

Proof: It suffices to mimic the proofs of Lemmas 1 and 2 of [3] with the additional hypothesis of the group action of A on G.

THEOREM 1: Suppose that a group A acts on a group G. Then $\Gamma_A(G)$ has at most two connected components.

Proof: Mimic the proof of Theorem 1 of [3], but considering the group action hypothesis and Lemma 1. ■

We summarize the results for the diameter of the invariant conjugacy class graph in the following theorem.

Theorem 2: Suppose that a group A acts on a group G.

- (a) If $\Gamma_A(G)$ is connected, then $d(\Gamma_A(G)) \leq 4$.
- (b) If $\Gamma_A(G)$ is not connected, the diameter of each connected component is at most 2.

Proof: In order to obtain (a), it suffices to reproduce the proof of Theorem 4 of [3] with the additional hypothesis of coprime action and Lemma 1.

For proving (b), suppose that $\Gamma_A(G)$ is not connected but $d(\Gamma_A(G)) \geq 3$. Then, we may choose B and C belonging to the same connected component and such that d(B,C)=3. Without loss, suppose that |B|<|C|, so by Lemma $1(c), |\langle BB^{-1}\rangle| \mid |C|$, and choose D to belong to the other connected component of $\Gamma_A(G)$. Suppose first that |D|<|B| and, again by Lemma $1(c), |\langle DD^{-1}\rangle|$ divides |B| and $|DD^{-1}\rangle \subseteq \langle BB^{-1}\rangle$. Therefore, we conclude that $|\langle DD^{-1}\rangle|$ divides both |B| and |C|, contradicting |D| and |C|, which is a contradiction. Thus, (a) is proved.

Lemma 2: Suppose that G is a finite group. If the length of each conjugacy class is not divisible by r, then G has a central Sylow r-subgroup.

Proof: See Theorem (33.4) of [5].

In order to prove Theorem A we also need some facts on coprime action. The first one is a well-known result.

LEMMA 3: Let A act coprimely on G. Then $B \to B \cap \mathbf{C}_G(A)$ defines a bijection from the set of A-invariant conjugacy classes of G onto the set of conjugacy classes of $\mathbf{C}_G(A)$. Furthermore, $|B \cap \mathbf{C}_G(A)|$ divides |B| for any A-invariant class B of G.

Proof: The first assertion is just Corollary (14.4) of [5].

Let B be an A-invariant class of G and write $C = \mathbf{C}_G(A)$. We prove that $|B \cap C|$ divides |B|. Notice that there exists some $c \in B \cap C$, whence $B = \mathrm{Cl}_G(c)$. Then $|B| = |G: C_G(c)|$ and $|B \cap C| = |\mathrm{Cl}_C(c)| = |C: C_C(c)|$. Let p be a prime divisor of $|C: C_C(c)|$. Observe that $C_G(c)$ is an A-invariant subgroup. Since any A-invariant p-subgroup is contained in an A-invariant Sylow p-subgroup, we may choose an A-invariant Sylow p-subgroup P of P such that $P \cap P$ is a Sylow P-subgroup of P and similarly, $P \cap P$ and P is a Sylow P-subgroup of P and similarly, $P \cap P$ and P is a Sylow subgroup of P and similarly, $P \cap P$ and P is a Sylow P-subgroup of P and similarly, $P \cap P$ and P is a Sylow P-subgroup of P and similarly, $P \cap P$ and P is a Sylow subgroup of P and similarly, $P \cap P$ and P is a Sylow subgroup of P and similarly, $P \cap P$ and P and P is a Sylow subgroup of P and P and P and P is a Sylow P-subgroup of P and P and P and P are P and P and P are P are P and P are P are P and P are P and P are P are P are P and P are P and P are P are P are P are P and P are P are P are P and P are P are P and P are P are P are P are P and P are P are P and P are P are P are P are P and P are P and P are P are P are P are P are P and P are P

$$|C:C\cap C_G(c)|_p = |C|_p/|C\cap C_G(c)|_p = |P\cap C:P\cap C\cap C_G(c)|.$$

But $|P \cap C: P \cap C \cap C_G(c)| \leq |P: P \cap C_G(c)| = |G|_p / |C_G(c)|_p = |G: C_G(c)|_p$, so we conclude that $|\operatorname{Cl}_C(c)|_p \leq |\operatorname{Cl}_G(c)|_p$ for all primes p, and we are done.

Lemma 4: Suppose that A acts coprimely on G and that N is an A-invariant normal subgroup of G. Then, for any A-invariant conjugacy class $\operatorname{Cl}_{G/N}(gN)$ of G/N, there exists an A-invariant class $\operatorname{Cl}_G(c)$ of G such that $|\operatorname{Cl}_{G/N}(gN)|$ divides $|\operatorname{Cl}_G(c)|$.

Proof: Let $\operatorname{Cl}_{G/N}(gN)$ be an A-invariant class of G/N and write $C = \mathbf{C}_G(A)$. By coprime action $\mathbf{C}_{G/N}(A) = CN/N$, so by Lemma 3 there exists some $cN \in CN/N$ such that $\operatorname{Cl}_{G/N}(gN) = \operatorname{Cl}_{G/N}(cN)$. It is clear that $\operatorname{Cl}_G(c)$ is A-invariant and $|\operatorname{Cl}_{G/N}(cN)|$ divides $|\operatorname{Cl}_G(c)|$, as required.

The following is a key fact for proving Theorem A and it relies on the classification of finite simple groups.

THEOREM 3: Suppose that A acts coprimely on G. If $C_G(A)$ is nilpotent then G is solvable.

Proof: This is Theorem B of [2]. ■

Proof of Theorem A: Let G be any group with a disconnected invariant graph, and let X_1 and X_2 be its components. We will prove that G is solvable by induction on |G|. We denote by π_1 and π_2 the sets of prime divisors of the lengths of the classes in X_1 and X_2 , respectively. Certainly $\pi_1 \cap \pi_2 = \emptyset$ and classes in distinct components satisfy the hypothesis of Lemma 1(c).

Let D be an A-invariant conjugacy class of G with the largest length. Without loss of generality we assume that $D \in X_2$. Set $M = \langle B|B \in X_1 \rangle$ and

 $N = \langle BB^{-1}|B \in X_1 \rangle$. Clearly M and N are non-identity A-invariant normal subgroups of G and N = [M, G]. We proceed with a series of steps.

Step 1: M is a proper subgroup of G.

Proof: Let \mathcal{D} be the union of all the A-invariant conjugacy classes of G of maximal size. Obviously, these classes are in X_2 . If D is one of them and $B \in X_1$, then BD is an A-invariant conjugacy class of G and |BD| = |D|. Thus, $BD \subseteq \mathcal{D}$, so we conclude that $B\mathcal{D} \subseteq \mathcal{D}$ and by cardinalities $B\mathcal{D} = \mathcal{D}$. Moreover, $M\mathcal{D} = \mathcal{D}$. Hence, \mathcal{D} is the union of cosets of the normal subgroup M. In particular |M| divides $|\mathcal{D}|$ and M is proper in G.

STEP 2: There exists an A-invariant conjugacy class of G contained in G-M and N is a π_2 -group.

Proof: Since |M| divides $|\mathcal{D}|$, but it is not possible that $M = \mathcal{D}$, it follows that $(G - M) \cap \mathcal{D} \neq \emptyset$. Therefore, as G - M is the union of conjugacy classes, there exists some $D \in \mathcal{D}$ such that $D \subseteq G - M$. For any $B \in X_1$ notice that BD is an A-invariant conjugacy class which satisfies |BD| = |D|, $DBB^{-1} = D$, whence DN = D. Thus, |N| divides |D|, which is only divisible by primes in π_2 . Therefore, N is a π_2 -group.

Step 3: M is abelian.

Proof: We first prove that $N \subseteq Z(M)$. Let $B \in X_1$, $b \in B$. Then $|N:C_N(b)|$ certainly divides both |N| and $|G:C_G(b)| = |B|$. By Step 2, (|N|, |B|) = 1. Thus, $N = C_N(b)$ and since M is generated by all classes $B \in X_1$, it follows that N is central in M, as wanted. Now, since [M,G] = N, we deduce that M is nilpotent. Write $M = R \times Z$, where Z is the largest Hall subgroup of M which is contained in Z(G). Let q be any prime dividing |R|, and choose Q a Sylow q-subgroup of R. Then Q is normal in G and $N = [M,G] \supseteq [R,G] \supseteq [Q,G]$. Since Q is not central in G, we deduce that q must divide |N|. Therefore, $\pi(R) \subseteq \pi(N) \subseteq \pi_2$. Arguing as at the beginning of this step, it follows that $R \subseteq Z(M)$, and consequently M is abelian.

STEP 4: G has a unique solvable minimal normal A-invariant subgroup. Consequently, M is a p-group for some prime $p \in \pi_2$.

Proof: We may choose $B \in X_1$ and $C \in X_2$ such that |B| < |C|. We know that $\langle BB^{-1} \rangle \subseteq \langle CC^{-1} \rangle$. Suppose that there exists a solvable minimal A-invariant normal subgroup of G, say K, such that $K \neq \langle BB^{-1} \rangle$. This implies that $bK \notin Z(G/K)$ for some $b \in B$, since in other case $\langle BB^{-1} \rangle \subseteq K$, and the minimality

of K yields the equality, a contradiction. Similarly, we obtain $cK \notin Z(G/K)$ for some $c \in C$. Now, if $\Gamma_A(G/K)$ is not connected, we have by induction that G/K is solvable, and the proof is finished. Therefore, we may assume that $\Gamma_A(G/K)$ is connected, so $\operatorname{Cl}_{G/K}(bK)$ and $\operatorname{Cl}_{G/K}(cK)$ are noncentral A-invariant classes which must be connected in $\Gamma_A(G/K)$. Since $|\operatorname{Cl}_{G/K}(bK)|$ divides $|\operatorname{Cl}_G(b)| = |B|$ and $|\operatorname{Cl}_{G/K}(cK)|$ divides $|\operatorname{Cl}_G(c)| = |C|$, it easily follows, by using Lemma 4, that B and C are connected in $\Gamma_A(G)$, which is a contradiction. Therefore, G possesses a unique solvable minimal A-invariant normal subgroup (which is equal to $\langle BB^{-1} \rangle$). The consequence in the statement of this step follows from the fact that M is abelian and N is a π_2 -group.

STEP 5: $Z(G) \cap \mathbf{C}_G(A) \subseteq \mathbf{C}_M(A)$.

Proof: If $z \in Z(G) \cap \mathbf{C}_G(A)$ and $B \in X_1$, then clearly Bz is an A-invariant class of G, with the same size as B. Thus $B, Bz \subseteq M$ and this implies $z \in \mathbf{C}_M(A)$.

STEP 6: For any $B \in X_1$ and $b \in B \cap \mathbf{C}_G(A)$, we have that $\mathbf{C}_{C_G(b)}(A)$ is a p-group.

Proof: Choose $B \in X_1$ and $b \in B \cap \mathbf{C}_A(G)$. Notice that $C_G(b)$ is an A-invariant subgroup containing M, since M is abelian by Step 3. Then $\mathbf{C}_M(A) \subseteq \mathbf{C}_{C_G(b)}(A)$, and if equality holds then there is nothing to prove. Thus, we may assume that there exists some $c \in \mathbf{C}_{C_G(b)}(A) - \mathbf{C}_M(A)$. By Step 5, we have $Z(G) \cap \mathbf{C}_G(A) \subseteq \mathbf{C}_M(A)$. This implies that $\mathrm{Cl}_G(c)$ is a noncentral A-invariant class of G outside M, so trivially it belongs to X_2 . Also, by Step 4, we know that b is a p-element and we write $c = c_p c_{p'}$, with $c_p, c_{p'} \in \mathbf{C}_{C_G(b)}(A)$, c_p and $c_{p'}$ being the p-part and p'-part of c, respectively. Since b and $c_{p'}$ commute and have coprime order, then $C_G(bc_{p'}) = C_G(b) \cap C_G(c_{p'})$ and consequently both |B| and $|\mathbf{Cl}_G(c_{p'})|$ divide $|\mathbf{Cl}_G(bc_{p'})|$. Similarly, but now reasoning with c_p and $c_{p'}$, we obtain that $|\mathbf{Cl}_G(c_{p'})|$ also divides $|\mathbf{Cl}_G(c)|$, which is a π_2 -number. It follows that if $|\mathbf{Cl}_G(c_{p'})| > 1$, then $|\mathbf{Cl}_G(bc_{p'})|$ is divisible by primes in π_1 and π_2 at the same time, but this is not possible. Therefore, $|\mathbf{Cl}_G(c_{p'})| = 1$, that is, $c_{p'} \in Z(G) \cap \mathbf{C}_G(A) \subseteq \mathbf{C}_M(A)$. As $\mathbf{C}_M(A)$ is a p-group, then $c_{p'} = 1$, so c is a p-element and consequently $\mathbf{C}_{C_G(b)}(A)$ is a p-group.

STEP 7: $\mathbf{C}_G(A)$ is a $(\pi_1 \cup \{p\})$ -group.

Proof: Suppose that there exists some prime r, distinct from p, dividing $|\mathbf{C}_G(A)|$. Choose $b \in B \cap \mathbf{C}_G(A)$ for some $B \in X_1$. If r does not divide $|B| = |G: C_G(b)|$, then there exists some A-invariant Sylow r-subgroup R of G such that $R \subseteq C_G(b)$. Then, $R \cap \mathbf{C}_G(A)$ is a nontrivial Sylow r-subgroup of $\mathbf{C}_G(A)$, which trivially lies

in $C_G(b)$. This contradicts Step 6 and therefore any such prime r must divide |B|, so r is a π_1 -number and the claim is proved.

Step 8: We may assume that $Z(\mathbf{C}_G(A)) \subseteq \mathbf{C}_M(A)$.

Suppose first that the size of any conjugacy class of $\mathbf{C}_G(A)$ is a p-number. By Lemma 2 and Step 7, it follows that $\mathbf{C}_G(A)$ has a central π_1 -Hall subgroup, and we deduce that $\mathbf{C}_G(A)$ is nilpotent. Therefore, by Theorem 3, G is solvable and the proof is finished.

Thus, we can assume that there exists a conjugacy class in $\mathbf{C}_G(A)$, say C, such that |C| > 1 is a π_1 number. Furthermore, by Lemma 3, we can write $C = B \cap \mathbf{C}_G(A)$, for some A-invariant class B of G. Also, since |C| divides |B|, then |B| must be a π_1 -number too, so $B \subseteq M$.

Now, if $z \in Z(\mathbf{C}_G(A))$, then certainly Cz is a conjugacy class of $\mathbf{C}_G(A)$ with the same size as C. Therefore, if $c \in C$ then $\mathrm{Cl}_G(cz)$ is an A-invariant conjugacy class of G. By applying Lemma 3, we obtain $\mathrm{Cl}_G(cz) \cap \mathbf{C}_G(A) = Cz$, and furthermore |C| = |Cz| divides $|\mathrm{Cl}_G(cz)|$. Then $|\mathrm{Cl}_G(cz)|$ is a π_1 -number too. In particular, $cz \in M$, and since $c \in M$, we obtain that $z \in M$.

STEP 9: $\Gamma(\mathbf{C}_G(A))$ is a disconnected graph and has classes whose size is a π_1 -number and classes whose sizes are p-numbers.

Proof: We will prove first that $C_G(A)$ has classes whose size is divisible by p and classes whose size is divisible by primes in π_1 . Suppose that p does not divide any conjugacy class length in $C_G(A)$. Then, by Lemma 2, $C_G(A)$ has a central Sylow p-subgroup. Since M is a p-group, it follows that $M \cap C_G(A) \subseteq Z(C_G(A))$ (in fact, the equality holds by Step 5). Therefore, if we choose $b \in B \cap C_G(A)$ for some $B \in X_1$, we obtain $C_G(A) \subseteq C_G(b)$. By Step 6, we deduce that $C_G(A)$ is a p-group, and applying Theorem 3 we conclude that G is solvable and our theorem is proved. Therefore, p must divide some conjugacy class length in $C_G(A)$.

On the other hand, since we can assume that $\mathbf{C}_G(A)$ is not a p-group, we choose a prime q dividing $|\mathbf{C}_G(A)|$, distinct from p. Notice that $q \in \pi_1$, by Step 7. If q does not divide any conjugacy class length in $\mathbf{C}_G(A)$, then, again by Lemma 2, $\mathbf{C}_G(A)$ has a nontrivial central Sylow q-subgroup. This is not possible because $Z(\mathbf{C}_G(A))$ is a p-group by Steps 4 and 8. Thus, $\mathbf{C}_G(A)$ has classes whose size is divisible by primes in π_1 , so our assertion is proved.

Now, by Lemma 3, any size class in $\mathbf{C}_G(A)$ divides the size of some A-invariant class in G. These facts allow us to conclude that the class sizes in $\mathbf{C}_G(A)$ are just π_1 -numbers or p-numbers, and that $\Gamma(\mathbf{C}_G(A))$ is disconnected.

Step 10: Conclusion.

Proof: Write $C = \mathbf{C}_G(A)$. The groups with a disconnected conjugacy class graph are completely characterized by Theorem 2 of [3]. By applying this result to C, we have that C/Z(C) is a Frobenius group, and if K/Z(C) and L/Z(C) denote the kernel and the complement of C/Z(C), respectively, then both K and L are abelian. Now, we consider $M \cap C/Z(C)$, which is a normal subgroup of C/Z(C). It is well known that any normal subgroup in a Frobenius group contains or is contained in its kernel. Thus, we have two possibilities: $M \cap C \subset K$ or $K \subseteq M \cap C$.

Suppose first that $M \cap C \subset K$ and take $k \in K - M \cap C$. As C/Z(C) is a Frobenius group and K and L are abelian, it follows that the class sizes in C/Z(C) are exactly $\{1, |K/Z(C)|, |L/Z(C)|\}$. Moreover, we have $1 \neq |\operatorname{Cl}_{C/Z(C)}(kZ(C))| = |L/Z(C)|$, since $k \notin Z(C)$ and the centre of a Frobenius group is trivial.

We know by Step 8 that $Z(C) \subseteq M \cap C$ and we see now that this containment is proper. By Step 9, there exists a noncentral conjugacy class of C, say E, whose size is a π_1 -number. Also, $E = B \cap C$ for some $B \in X_1$, by Lemma 3. Then, $1 \neq \langle E \rangle \subseteq \langle B \rangle \cap C \subseteq M \cap C$, $\langle E \rangle$ being trivially noncentral in C. Thus, $M \cap C$ contains properly Z(C), as wanted.

Therefore, $p \mid |M \cap C/Z(C)| \mid |K/Z(C)|$. Since (|K/Z(C)|, |L/Z(C)|) = 1, by Step 7 we conclude that |L/Z(C)| is a π_1 -number. Now, $|\operatorname{Cl}_{C/Z(C)}(kZ(C))| = |L/Z(C)|$ certainly divides $|\operatorname{Cl}_C(k)|$, and by Lemma 3, $|\operatorname{Cl}_C(k)|$ divides $|\operatorname{Cl}_G(k)|$. It follows that $|\operatorname{Cl}_G(k)|$ must be a π_1 -number too, so $k \in M \cap C$, which is a contradiction. This case is finished.

Suppose now that $K \subseteq M \cap C$. Since $C/K \cong L/Z(C)$ is abelian, we have that

$$C/M \cap C \cong CM/M = \mathbf{C}_{G/M}(A)$$

is abelian too. By applying Theorem 3, we obtain that G/M is solvable. Since M is abelian, then G is solvable and the proof is finished.

Suppose that A acts coprimely on G. The proof of the solvability of G when $\Gamma_A(G)$ is disconnected has been reduced to the case in which $\Gamma(\mathbf{C}_G(A))$ is disconnected too. It could be thought, considering Lemma 3, that there exists some kind of correspondence between the components of $\Gamma_A(G)$ and the components of $\Gamma(\mathbf{C}_G(A))$. The following example shows that $\Gamma_A(G)$ may be connected, whereas $\Gamma(\mathbf{C}_G(A))$ is a disconnected graph.

Example: Let $G = PSL(2, 2^5)$, the projective special linear group on the field F of 2^5 elements, which has order $2^5.3.11.31$. Let $A = \langle \sigma \rangle$, where σ is the automorphism of order 5 of F defined by $u^{\sigma} = u^2$ for any $u \in F$. Then, A acts coprimely on G. As σ fixes only the prime field of F, it is easy to see that

 $\mathbf{C}_G(A) \cong PSL(2,2) \cong S_3$. From the first step of the proof of our Theorem A, it follows (without making use of the classification of finite simple groups) that the invariant conjugacy class graph of a simple group must be connected, and thus, so is $\Gamma_A(G)$. (In fact, it can be proved, but using a result which relies on the classification, that $\Gamma_A(G)$ is a complete graph as in Proposition 5 of [3].) However, $\Gamma(\mathbf{C}_G(A))$ is a disconnected graph, since the noncentral class sizes in $\mathbf{C}_G(A)$ are $\{2,3\}$.

References

- [1] G. Alfandary, On graphs related to conjugacy classes, Israel Journal of Mathematics 86 (1994), 211–220.
- [2] A. Beltrán, Actions with nilpotent fixed point subgroup, Archiv der Mathematik 69 (1997), 177-184.
- [3] E. A. Bertram, M. Herzog and A. Mann, On a graph related to conjugacy classes of groups, The Bulletin of the London Mathematical Society 22 (1990), 569-575.
- [4] D. Chillag, M. Herzog and A. Mann, On the diameter of a graph related to conjugacy classes of groups, The Bulletin of the London Mathematical Society 25 (1993), 255– 262.
- [5] B. Huppert, Character Theory of Finite Groups, Walter de Gruyter, New York, 1998.
- [6] I. M. Isaacs and C. E. Praeger, Permutation group degrees and the common divisor graph, Journal of Algebra 159 (1993), 158-175.
- [7] S. L. Kazarin, On groups with isolated conjugacy classes, Izvestiya Vysshikh Uchebnykh Zavedeniy Matematika no. 7 (1981), 40–45.